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Abstract—Mid-air haptic feedback technology produces tactile
sensations that are felt without the need for physical interactions.
However, mid-air haptic experiences need to be congruent with
visual cues to reflect user expectations. To overcome this, we
investigate how to visually present properties of objects, so that
what one feels is a more accurate prediction of what one sees.
Specifically, this paper investigates the relationship between 8
visual parameters of a point-cloud representation of a surface
(particle color, size, distribution, etc.) and 4 mid-air haptic spatial
modulation frequencies (20, 40, 60 and 80 Hz). Our results and
analysis reveal a statistical significance between low and high-
frequency modulations and particle density, particle bumpiness
(depth) and particle arrangement (randomness).

Index Terms—Mid-air haptic, visualization, particles, ultra-
sound haptics

I. INTRODUCTION

Ultrasonic mid-air haptic feedback enriches human-
computer interactions in a contactless manner, particularly
when combined with 3D hand-tracking technology [1], [2].
It adds physicality to digital content and enables natural
gesture input for emerging applications, including automotive,
touchless displays, and AR/VR. Recent research has focused
on the ability of mid-air haptics to render varying roughness
properties, including textures [3]-[9].

What is common in all previous research on the topic of
mid-air haptic textures is that the haptic rendering method
[10] was a function of the graphical texture (i.e., graphics
to haptics). For example, Beattie et al. [5], [6] described
an algorithm that uses the displacement map of a textured
graphical image (e.g., a picture of a carpet or of a plank of
wood) to dynamically adjust the properties of a mid-air haptic
stimuli. In contrast, in this paper, we investigate the opposite
(i.e., haptics to graphics). We aimed to bridge the gap, by
visualising the experiential qualities of the pattern rather than
its spatial properties. Our motivation is to better understand
the perceptual space of the mid-air haptic stimuli and also to
provide some design insights on how to best achieve visuo-
haptic (i.e., cross-modal) congruence.

Existing mid-air haptic technology may not adequately
reflect the user’s expectation of haptic feedback that matches
the visual properties of solid objects. Martinez et al. [11]
proposed that there is a mismatch between seeing a solid-
looking virtual object, and feeling mid-air haptic feedback
(which lacks force feedback), resulting in a sub-optimum user
experience. User expectation is key in providing a good user
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Fig. 1. Overview of the experimental GUI, with 8 visual parameters/sliders
and the particle surface that users interact with. Also shown are the user’s
avatar hands captured by the hand tracking camera.

experience, and when it comes to experiences of everyday
objects in virtual environments, people typically bring their
real-world expectations with them. Therefore, the challenge
for mid-air haptic technology is how to prepare and adjust the
user’s expectations a priori to the tactile experience.

To that end, in this paper we have designed and performed
a user study whereby 21 participants adjusted 8 properties of
a digital point-cloud surface (Color, Saturation, Sheen, Size,
Shape, Density, Distribution, Surface) made up of hundreds
of particles (i.e., a point-cloud) as shown in Figures 1 and 2,
in response to four different mid-air haptic stimuli. Namely,
a spatio-temporally modulated (STM) focal point targeted
onto the user’s palm rapidly tracing out a small haptic circle
of perimeter 20 cm with rotation frequency of 20, 40, 60,
and 80 Hz. We chose these four stimuli since Ablart et al.
[4] had previously identified an inverse relationship between
STM frequency and roughness (higher frequency feels less
rough). The motivation to employ a “passive approach for
the evaluation of surface roughness was also inspired by the
Ablart‘s study.

Through several significance tests, a principal component
analysis, a participant questionnaire feedback, and a thematic
analysis, we demonstrate that Density, Distribution, Surface
are the three most important visual parameters that can influ-
ence visuo-haptic congruence.

II. RELATED WORKS
A. Visual textures and point-clouds

Surface texture can be represented as a point-cloud, which
can be rendered directly or transformed into mesh models
for 3D graphics processing. They are commonly used in
applications like visualization, animation, rendering, and mass
customization [12]. Martinez et al. proposed creating visual
textures based on point-clouds to represent mid-air haptic
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Fig. 2. Examples of potential point-cloud surfaces made up by using different
visual attributes during the study.

textures, while Bhardwaj et al. proposed the use of mid-air
haptics to explore cluster density and volume information of
data clouds [11], [13].

B. Haptic texture perception

Texture perception is a combined sensory experience where
visual and tactile senses work together to interpret three tex-
tural dimensions: roughness, hardness, and slipperiness [14].
Tactile exploration, whether dynamic or static, is required
for full haptic perception [15]. Haptic virtual texture has
been studied using various apparatus, including force feedback
devices, pin-arrays, vibrotactile actuators, touchscreen haptic
surfaces, and mid-air haptics. Researchers have investigated
numerous characteristics to alter the perceived texture of tactile
inputs, including frequency and waveform, which have the
greatest impact on tactile texture perception [16]. Pseudo-
haptic sensory supplementation techniques have also been
explored [17].

C. Mid-air haptic textures

Freeman et al. [3] used a mapping technique for mid-
air haptic texture creation, while Ablart et al. [4] studied
roughness perception based on spatiotemporal frequency mod-
ulation. Beattie et al. [5] used ML algorithms for incorporating
roughness perception, Matsubayashi et al. [7] focused on
rendering softness, and Morisaki et al. [8] created a visual-
haptic prototype demo. Freeman [9] used audio sounds to
influence roughness perception in mid-air haptic sensations.

D. Visuo-haptic congruence and perception

There is agreement that haptic feedback improves immer-
sion and UX in virtual environments [18], [19]. Sensory
information congruency between visual and haptic senses
determines a user’s level of immersion [20]. Congruent visuo-
haptic inputs result in more accurate perception of stimuli
wheras incongruent visuo-haptic information deteriorates pres-
ence in VR [21], [22].

III. USER STUDY

The purpose of this experimental research was to investigate
and define what parameters of the visual point-cloud surface
are significantly related to mid-air haptic stimuli of varying
roughness ratings. To that end, we describe below a within-
subjects user study comprising of four haptic conditions fol-
lowed by a post-evaluation questionnaire.

A. Participants

21 participants were recruited from University of Bath staff
and students, Ultraleap employees, and members of their fam-
ilies, with an age range of 18 to 54 (mean 33, SD 8 years), 5
identified as women and 16 identified as men. All participants
were right-handed and 18 described themselves as familiar
with mid-air haptic technology. Participants came from diverse
backgrounds with a good grasp of English language.

B. Haptic Stimuli

Four mid-air haptic stimuli were presented, each comprising
of a focal point that traces a small haptic circle of perimeter 20
cm with rotation frequency of 20, 40, 60, and 80 Hz (motivated
by Ablart et al. [4]). The stimuli were targeted at the centre
of the user’s palm using the Leap Motion hand tracking API.
Therefore, the participants did not need to hold their hand
completely still but could move it freely within the tracking
range of the device. Participants were however advised to keep
their hand relatively steady, centred, and approximately 20 cm
above the haptic display for optimal performance. We note that
the displayed pointcloud had a square tract (see Figure 1) in
order to resemble the Ultraleap device and hence confine the
possible user motion above the device and near its optimal
operating region.

C. Protocol

Each participant experienced the 4 haptic conditions, 3 times
each, in a counterbalanced order using a Latin square. Eight
dependent variables could be adjusted using a mouse pointer
that would move the respective sliders smoothly from left to
right on the screen. Each of these represented a different visual
feedback and would dynamically alter the properties of the
graphical point-cloud in an obvious and intuitive way.

1) Color: this would adjust the color of the particles by

cycling through the hue spectrum.

2) Saturation: this would adjust the brightness of the par-
ticles.

3) Sheen: this would adjust the glossiness of the particles.

4) Size: this would adjust the size of each particle.

5) Shape: this would morph the particles from sphere, to
cube, to cylinder, to a pyramid to triangle.

6) Density: this would change the number of particles
displayed per unit area.

7) Distribution: this would adjust the strength of random
perturbations applied to a uniform grid of points. A
stronger perturbation would lead to a random distribu-
tion of points.

8) Surface: This would apply random perturbations in the
z direction thus affecting the visual bumpiness of the
point-cloud surface.
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Fig. 3. Box plots of the 9 sliders for the four different frequency conditions. Each slider output was re-scaled onto the unit interval for the sake of comparison.

A ninth slider was included for participants to rank their
confidence in the visuo-haptic congruence achieved by their
selections. In total we collected 4 x 3x9x 21 data points.

D. Procedure

Due to Covid-19 restrictions, the study was conducted inde-
pendently by participants on laptops and an Ultraleap Stratos
Explorer Device during a Zoom video call with the researcher.
Participants signed an information sheet and consent form, and
an experimental Unity3D-developed GUI was shared as an
executable for them to play the particle demo shown in Figure
1.The particle point clouds were rendered using standard
parameters available for point cloud generation, using existing
Unity 3D VFX packages. Participants were briefed about the
purpose of the study and allowed one trial session where they
were familiarised with the Ultraleap device, the experimental
GUI interface, and how the different sliders could be adjusted
to change the particle visual representations. During the ex-
periment, participants were instructed to use ear defenders to
ensure minimum distraction from the outside environment, and
were asked to adjust the visual representation of the particles
to best match the mid-air haptic stimulus, one at a time, using
all the sliders, and save the parameters before feeling the
next stimulus. To reduce bias, after each sensation, the sliders
were reset to 0 and the haptic sensation stopped playing for 3
seconds to allow for the hand to rest. In addition, participants
were asked to use a confidence slider to show how well they
thought they were able to recreate the sensation using the
sliders.

After the haptic experiment, participants were debriefed and
asked to fill out a post-evaluation online questionnaire, which
consisted of 26 questions regarding their overall experience,
interaction with the particles GUI and a 7-point Likert scale
for each dependent variable (ranging from not useful (1), to
very useful (7)) followed by a short explanation of why the
participant found that control parameter useful or not useful
when trying to visually recreate the mid-air haptic stimulus.
The Zoom calls lasted approximately 50 minutes, while the
experimental part of it took about 30 minutes. All collected
data was anonymized, stored securely, and prepared for post-
processing and statistical analysis.

IV. RESULTS
A. Quantitative analysis
Figure 3 shows box plots of the nine sliders scaled onto the
unit interval for the four haptic stimuli conditions (20, 40, 60,
80 Hz), demonstrating the locality, spread and skewness of
the data. To aid visual comparison, Figure 4 plots the median
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Fig. 4. Reported median values of each variable for the four conditions. Also
plotted is the 1 minus the standard deviation (1 — o) of the reported medians
of each condition.

of the nine sliders for the four haptic stimuli conditions. We
plot the median since the mean can be biased by outlier data
rather than the typical values. Also plotted in Figure 4 is the
standard deviation o of the medians for each of the nine input
sliders across the four conditions. We observe that participants
rated their answers to the 20 and 80 Hz conditions slightly
higher median confidence levels. We also observe that the
standard deviations o of the medians of the Surface, Density
and Distribution are much larger that any of the other five
dependent variables (Color, Saturation, Sheen, etc.) as can be
visually seen by the spread of their medians. We proceed with
further statistical tests.

Each frequency data set was divided into a data set of its
own, with every parameter measured against its counterparts
from the other groups. Due to data violating normality fol-
lowing a Shapiro Wilk test, frequency group differences were
measured using other non-parametric tests. Both Friedman
and Wilcoxon showed significant differences with x(4) =
43.788, and p < 0.001 for Surface and Distribution, and
x(4) = 26.565, and p < 0.001 for Density. A post hoc
analysis with Wilcoxon signed-rank tests was conducted with a
Bonferroni correction applied, resulting in a significance level
set at p < 0.0083 for the following samples.

Table I presents the significant differences between test
scores between various pairs of frequency conditions calcu-
lated using the Wilcoxon Signed-Rank Test for dependent
parameters Density, Surface, and Distribution. We did not find
statistical significance for Size (x(4) = 1.59,p = 0.6), Sheen
(x(4) = 0.38,p = 0.9), Shape (x(4) = 4.0,p = 0.2), Color
(x(4) = 2.9,p = 0.4, or Saturation (x(4) = 1.12,p = 0.7).

Figure 5 shows the resulting user-generated point-cloud
surface visualisations that best match the four haptic stimulus



Density Frequency condition | ¢-test | z-test p-value
20 Hz and 40 Hz 337 -3.205 | p <0.001
20 Hz and 60 Hz 445 - 3.59 p <0.001
20 Hz and 80 Hz 262 -4.595 | p <0.001

Surface 20 Hz and 40 Hz 199 -4.572 | p <0.001
20 Hz and 60 Hz 175 - 5.08 p <0.001
20 Hz and 80 Hz 98.5 -5.93 p <0.001
40 Hz and 80 Hz 295 - 4.33 p <0.001
60 Hz and 80 Hz 2355 | -3.02 p <0.001

Distribution | 20 Hz and 40 Hz 2745 | -3.90 p <0.001
20 Hz and 60 Hz 231 -4.28 p <0.001
20 Hz and 80 Hz 228 - 4.07 p <0.001

TABLE 1
SIGNIFICANT DIFFERENCES FOR TEST SCORES BETWEEN PAIRS OF
FREQUENCY, CALCULATED USING THE WILCOXON SIGNED-RANK TEST.

Fig. 5. Example particle surfaces using the medians of the three significant
parameters (Density, Distribution, Surface) for the four haptic conditions 20
Hz, 40 Hz, 60 Hz, and 80 Hz (from top left to bottom right).

conditions. Indeed, we can visually observe that the lower
frequency stimulus appears more sparse, random, and bumpy
compared to the higher frequency ones.

B. Principal Component Analysis

In this subsection, we perform further data analysis on the
participant data in the form of principal component analysis
(PCA). PCA is often used in exploratory data analysis and for
dimensionality reduction by projecting each data point onto
only the first few principal components to obtain a lower-
dimensional dataset while preserving as much of the data’s
variation as possible. We will show that 99.9% of our original
8-dimensional data variability can be well described by just
3 dimensions (principal components) that are a linear com-
bination of the original 8 visual attributes (Color, Saturation,
Sheen, Size, Shape, Density, Distribution, Surface).

We start by standardizing the dataset by rescaling the user-
ratings onto the unit interval and taking the median values (as
shown in Figure 4). We can represent this as a 4 X 8 matrix
X, where each row corresponds to the 4 haptic conditions,
and each column corresponds to the 8 dependent variables.
We then calculate the 8 x 8 covariance matrix C = cov(X),
and obtain its respective eigenvalues {ui,us,...,ug} and
eigenvectors {vy,vs,...,vs} which we identify as the prin-
cipal components (PCs) of our data. Recall that eigenvalues
satisfy w3 > wo > ... > ug > 0, and that eigenvectors
have unit length |v;|; = 1, by definition. The proportion of
variance explained (PVE) e; by eigenvector v; can be used to
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Fig. 7. Re-projection of the four haptic conditions (20, 40, 60 and 80 Hz)
onto the principal component 3D space. The box ratio is scaled according to
the PVE of each PC.

identify the optimal number of PCs to keep based on the total
variability that we would like to account for in our data, and is
givenby e; = u;/ ) ; u;. We find that e; = 91.3%, ea = 5.4%
and ez = 3.2%, while e4 = 0. It can therefore be noted that the
first three eigenvalues account for 99.9% of the variability of
the participant data, implying that the 8-dimensional dependent
variable space can be reduced and adequately described by a
3 dimensional one comprising of the three first PCs. We thus
set vy, v9, and v as the three PCs which we use to visualize
and interpret our haptics-to-graphics user-generated data set

PC1:v; = (0.1,0,0,0.1,0,0.4, —0.4, —0.8) (1)
PC2 : vy = (0.3,0,0.4,—0.4,0.6,0.5,0,0.3) )
PC3 : vy = (—0.1,-0.3,0.5,0.4,0.4,—0.5,—-0.3,0)  (3)

Figure 6 shows how the eight different features contribute to
PC1, PC2 and PC3. We observe that most of the features have
very low weights along PC1, with the exception of Density,
Distribution, and Surface (similarly to the significance results
of the previous subsection).

Projecting the 4 haptic stimuli onto the dimensionally
reduced principal component space by using a dot product
X -v; allows us to better visualize their differences, as shown
in Figure 7. Distances between points represent how different
those stimuli are in terms of the PCs. We observe that PC1
manages to sort the stimuli conditions in terms of their fre-
quency. This is quite remarkable, since we know from Ablart
et al. [4] that stimulus frequency is inversely proportional to
perceived texture roughness, meaning that we can identify
PC1 as a smoothness scale. Thus, a higher frequency stimulus
is perceived as smoother and is visuo-haptic congruence is
positively correlated with point-cloud Density (more particles),
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Fig. 8. Box plots of the usefulness ratings associated to the 8 graphical sliders.

but negatively with point-cloud Distribution (more uniform
particles) and point-cloud Surface (more flat), and vice versa.

Also, from Figure 7, we can see that PC1 does not ad-
equately separate the 40 and 60 Hz conditions. For that,
one needs to look at PC2 which suggests that these two
conditions differ mostly in terms of Shape, Density, Size and
Sheen, however we cannot provide any further intuition on the
meanings of PC2 and PC3.

Using vp,vq, and vz, one can try to guess the solution
of the inverse problem: given a haptic stimulus frequency,
what should the point-cloud Density, Distribution, and Surface
sliders be? To see this, we first construct the slider vector s =
(0.2,0.25,0.24,0.48,0.23, sg, s7, Sg), where the first 5 entries
comprise of the median participant ratings for point-cloud
Color, Saturation, Sheen, Size, and Shape, respectively, while
Sg, S7, and sg correspond to the unknown slider values for
Density, Distribution, and Surface, respectively, that we want
to find. Next, we select a coordinate point f = (f1, f2, f3)
in PC1-PC3 space from the 3D plot in Figure 7 that we
want to find its likely slider values. To do so, we solve the
equation (v1, vz, v3) s = f to obtain that s¢ = 0.13+0.4f; +
1.14fs — 0.71f3, s = 0.86 — 0.56f1 — 1.73fo — 2.2f3 and
s§—0.35—0.75f1+1.56 fo+0.86 f5. For example, we could try
and guess that a 30 Hz haptic condition might have coordinates
near f = (—0.3,0.25,0.15), since it should be approximately
at the midpoint between the 20 and 40 Hz conditions in Figure
7. We can then calculate that {sg, s7,sg} = {0.18,0.30,0.38}.
While we cannot verify this prediction, our approach is an
educated best guess made possible by PCA.

C. Usefulness Ratings

The post-evaluation online questionnaire was completed by
participants after the Zoom call at their own time. First, partic-
ipants were asked to score from 1 to 7 the usefulness of the 8
sliders they used during the experiment when trying to match
point-cloud properties to the haptic stimuli. In descending
order of reported usefulness, their responses were: Density
(6.1), Size (5.8), Surface (5.5), Distribution (5), Shape (3.8),
Sheen (2.5), Saturation (2.2), and Color (1.5). This ordering
is mostly in line with the results reported in the previous
section, with the exception of Size, where Density, Surface,
and Distribution were identified as significant differentiators
of the four haptic conditions presented. Figure 8 shows the
participant responses with regards to slider usefulness.

We provide some of the participant explanations or reason-
ing of the above ranking. Interestingly, we see some answers
referring to multiple features thereby implying that haptic

sensations cannot be described by a single visual parameter.
Density - P16: “Particle amount was the most intuitive param-
eter. It was easier to tell if there were lots or few compared
to some of the other parameters.” Size - P1: “The sensation
sometimes felt like big pulses on the hand, or the sensation
felt smooth with no noticeable pulses. Setting the particle
size to small meant I could get a smooth flat surface, or a
slightly bumpy surface. A big particle size meant I could
recreate the big pulsing sensations.” Surface - P18: “I felt
like for sensations that had larger bumps or particles, it is
useful, as these are more pronounced and I could feel some
level of elevation difference. For sensations that felt like small
particles, I found it hard to tell if it was a difference in
shape or density I was feeling.” Distribution - P8: “When
it was random, I could really feel the "no sensation” gaps
when I ran hand over places of no particles.” Shape - P4:
“It helped me think about the haptics when I was feeling
them, but I couldn’t differentiate between the shapes.” Sheen
- P15: “It was useful just for the sake of the imagination,
For example if the stimulus was bubbly, it was easier for me
to perceive a colder material which pointed me to choose a
glossy effect (metallic effect) vs matte.” Saturation - P7: “1
couldn’t associate it with a sensation feature.” Color - P16:
“It was difficult to associate any different colours - I think the
temperature was more influencing my choice of colour.”

D. Thematic Analysis

We looked at the frequency counts of different words and
adjectives used by participants in their questionnaire responses
to describe the haptic stimuli. The most used adjectives for a
description of mid-air haptic sensations were either “bumpy,
bubbly, round” (10) or “rough” (5) (for low frequencies
conditions) “smooth, fuzzy” (7) (for high frequencies) or other
synonyms of those. Other commonly used adjectives were
“enjoyable” (3), “playful” (2), “soft” (3). “spiky, scratchy” (2).

E. General Participant Comments

Overall, 78% of the participants thought that particles was a
good way to represent texture, 57% thought that particle was
a good way to represent bumpy or rough surfaces, but only
37% that it was good to represent smooth or flat surfaces,
while 32% did not think it was a good way to represent any
surfaces at all. 47% of the participants said that they found it
difficult to recreate the visual for at least some stimuli, and
16% said that it would have been easier if fewer slider options
were available. When asked about using particles to represent
objects in virtual reality (VR), 42% of the participants thought
it would be a good idea (but depending on the context e.g.,
volumetric items, curtains, rucksacks) while 16% participants
did not feel it was a good way to represent solid objects in
VR, and the rest of the participants were unsure.

V. DISCUSSION

1) Limitations: COVID-19 restrictions resulted in an un-
controlled study as participants took the study online, po-
tentially introducing bias. The results are limited in their
generalizability to 3D graphics, as most are polygonal meshes
rather than point-clouds. Similarly, the findings cannot be



transferred to other haptic stimuli such as AM, DTP, LM,
and other STM shapes. The study’s results may have also
been impacted by participants’ varying levels of experience
with mid-air haptic technology. [10]. The study’s sample
size of 21 test persons may limit the generalizability of the
findings. Additionally, the complexity of the interface as well
as personal preferences, which includes eight variables, could
pose challenges for users and impact the overall convergence
to a consensus.

2) Importance: Existing research has demonstrated the
importance of visuo-haptic congruence in applications and use
cases. The results of our study align with this notion, as par-
ticipants agreed that particles allows for a better representation
of mid-air haptic sensations and for creating congruent mid-air
textures/surfaces visualized through particles. In addition, our
research also calls for more multisensory research to better
inform on how graphical properties should be adjusted to
better match mid-air haptics. These findings hold significant
implications for how visuals should be adjusted in order to
create a more efficient and immersive user experience.

3) Future work: Visuo-haptic congruence is a key factor-
for successful mid-air haptic interfaces, such as widget and
buttons. Established design guidelines are needed to create
visually appealing and functionally effective interfaces. It is
becoming clear that adherence to these guidelines is necessary
to achieve optimal outcomes. As future work, stimuli could be
designed to move in a circulating trajectory for participants
to perceive the entire texture. Further research can build on
the “haptics to graphics* approach by incorporating dynamic
haptic and visual stimuli. Additioanlly, conducting a study
with fewer parameters may increase confidence in the findings.
Looking at the results, intermediate values (40 and 60) may
have been harder for participants to differentiate than the
extremes. This has implications for future studies, which
should consider optimizing the number and distribution of
stimuli to minimize confusion.

VI. CONCLUSION

We conducted a user study exploring the relationship be-
tween 8 visual point-cloud parameters and 4 mid-air haptic
stimuli of varying modulation frequencies. Significant relation-
ships were found between 3 of the visual parameters, which
were corroborated by principal component analysis. A post-
evaluation questionnaire provided insights into which visual
properties of a point-cloud were considered useful in achieving
visuo-haptic congruence. Our findings align with previous
research on haptic textures [23]. Future studies can further
investigate the use of particles for visualizing other mid-air
haptic sensations and improving audio-haptic congruence.
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